
Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem A: Two’s Complement
Input File: a.in
Source File: a.c | a.cpp | a.java
Time Limit: 3 seconds

Problem Description
Computers represent numbers as a sequence of binary digits or bits. For instance the 8-bit number
001011012 is used to represent 4510 since

0× 27 + 0× 26 + 1× 25 + 0× 24 + 1× 23 + 1× 22 + 0× 21 + 1× 20 = 4510.

To represent negative numbers, computers actually make use of the additive inverses and assigns
the most significant bit (the MSB or the leftmost bit) for the sign. This technique, called the two’s
complement notation, is used by the C, C++ and Java’s primitive int datatype.

The two’s complement of a value is found by first taking the one’s complement (a binary
number consisting of bits which is the inverse of the bits representing the original number), then
incrementing that result by 1. For example, to represent the −4510, which is the additive inverse
of 4510, as an 8-bit binary number, we first need to get the unsigned binary representation of 4510
then invert each bit and add 1 to the result. This yields 110100112 (see below).

Original Value (4510) 0 0 1 0 1 1 0 1
One’s Complement 1 1 0 1 0 0 1 0
Two’s Complement (−4510) 1 1 0 1 0 0 1 1

In the two’s complement notation, a binary value with a 0 in the MSB position is considered
positive and a binary value with a 1 in the MSB position is considered negative. This introduces
one important constraint of this notation: Since the MSB is used to indicate the sign, half of
the bit patterns lose their positive association. In fact, for an n-bit two’s complement number z,
it is easy to see that −2n−1 ≤ z ≤ 2n−1 − 1. This is the reason why the int datatype, which
employs a 32-bit two’s complement notation, can only represent numbers from -2,147,483,648 to
2,147,483,647.

Your task is to write a program that reads several integers and converts them to two’s complement
binary notation with specified number of bits.

Input Format
The input starts with a positive integer k ≤ 50, which denotes the number of cases. This is
then followed by k lines where each line contains integer z, the number you need to convert into
two’s complement, and n, the number of bits that will be used for representing the number in
binary. These two integers are separated by a single space. Assume that −231 ≤ z ≤ 231 − 1 and
0 < n ≤ 32.

Output Format
The output for each case begin with a line containing the word CASE followed by a single space,
the case number, and a colon (:). Following the case label, print equivalent value of the x in two’s
complement using n bits. If z cannot fit in an n-bit two’s complement number, print the word
IMPOSSIBLE.

Page 1 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Sample Input
3

45 8

-45 8

45 6

Sample Output
CASE 1:

00101101

CASE 2:

11010011

CASE 3:

IMPOSSIBLE

Page 2 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Glenn Fabia
Institution: Ateneo de Naga University
Contact: gfabia@gbox.adnu.edu.ph

This problem does not have an editorial. Please contact the problem setter via the contact
information given above.

Page 3 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem B: RANDU
Input File: b.in
Source File: b.c | b.cpp | b.java
Time Limit: 3 seconds

Problem Description
Many random-number generators in use today are Linear Congruential Generators (LCGs),
introduced by Lehmer (1951). A sequence of integers Z1,Z2, . . . is defined by the recursive formula

Zi = (aZi−1 + c)(mod m)

where m (the modulus), a (the multiplier), c (the increment), and Z0 (the seed or starting value)
are nonnegative integers. Also, 0 < m, a < m, c < m, and Z0 < m. That is, to obtain Zi, divide
aZi−1 + c by m and let Zi be the remainder of this division.

For example, the LCG Zi = (5Zi−1 + 3)(mod 16) with Z0 = 7 generates the following sequence of
numbers:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Zi 7 6 1 8 11 10 5 12 15 14 9 0 3 2 13 4 7 6 1 8 11

Note that Zi repeats. The length of the cycle is referred to as the period of a generator. For LCG
with 0 ≤ Zi ≤ m− 1, the period would evidently be at most m. If it is in fact equal to m, we say
that the LCG has a full period.

The parametersm, a, c, and Z0 are typically chosen to optimize computational and space efficiency
as well as observed certain statistical properties. For instance, a good candidate for the multiplier
a is an integer of the form 2l + j (so that multiplication of Zi−1 by a is replaced by a shift and j
adds). Also, the modulo, m, is usually chosen to be very large for it is much desirable to have LCGs
with long periods. Immediately, one can notice that a candidate for m would be an integer of the
form 2b, with b being the number of bits on the computers. The generator known as RANDU is
of this form (m = 231 = 2, 147, 483, 648, a = 216 + 3 = 65, 539, and c = 0). Note that in RANDU,
b = 31 since in most 32-bit computers (and compilers) the leftmost bit is used to represent the
sign.

Your task is to write a program that implements the RANDU generator described above.

Input Format
The input starts with a positive integer k ≤ 50, which denotes the number of cases. This is then
followed by k lines where each line contains integer Z0, the seed value, and n, the number of
random numbers to generate. These two integers are separated by a single space. Assume that
0 ≤ Z0 ≤ 231 and 0 < n ≤ 216.

Output Format
The output for each case begins with a line containing the word CASE followed by a single space,
the case number, and a colon (:). Below the case label are the corresponding Zi’s, i = {1, . . . , n}
for the case.

Page 4 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Sample Input
3

1 5

1 10

1772212344 20

Sample Output
CASE 1:

65539

393225

1769499

7077969

26542323

CASE 2:

65539

393225

1769499

7077969

26542323

95552217

334432395

1146624417

1722371299

14608041

CASE 3:

224227688

427840568

548994216

1590883832

309387752

423273912

1902637352

1163907960

597129832

1697541944

516115880

Page 5 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

703719672

1724758760

1867591864

2125173288

237680248

1626874728

1179675192

1026113192

1982053368

Page 6 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Glenn Fabia
Institution: Ateneo de Naga University
Contact: gfabia@gbox.adnu.edu.ph

This problem does not have an editorial. Please contact the problem setter via the contact
information given above.

Page 7 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem C: Sharkovski Successor
Input File: c.in
Source File: c.c | c.cpp | c.java
Time Limit: 1 second

Problem Description
In a 1964 paper on continuous mappings of the reals into the reals, Alexandr Sharkovski used the
following ordering of the positive integers:

3 J 5 J 7 J 9 J ... J 3 · 2 J 5 · 2 J 7 · 2 J ... J 3·22 J 5·22 J ... J23 J22 J 2 J 1

As Ciesielski and Pogoda (2008) describe it:

“First come the odd numbers, beginning with 3, arranged in increasing order. This sequence is
repeated with each odd integer multiplied by 2. The initial sequence is again repeated with each
odd integer multiplied by 22, and so on. The terminal sequence consists of the non-negative powers
of 2 arranged in decreasing order (note that 1 = 20).”

Write a program that reads a list of up to 254 positive integers with values less than 65,535
separated by white space and terminated by the number 0. For each positive integer in the list, the
program should output the next number in the Sharkovski ordering (the ‘Sharkovski successor’).
Note that the number 1 has no Sharkovski successor, but for this problem, we will let the successor
of the number 1 be the number 3.

Input Format
The input is a list of up to 254 positive integers with values less than 65,535 separated by white
space and terminated by 0.

Output Format
The output is a list of the Sharkovski successors of the input positive integers in the corresponding
order. The output integers are separated by exactly one space.

Sample Input
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 49152 63488 0

Sample Output
3 1 5 2 7 10 9 4 11 14 13 20 15 18 17 8 19 22 21 81920 67584

Page 8 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Joel Noche
Institution: Ateneo de Naga University
Contact: jnoche@gbox.adnu.edu.ph

1 language: C
2
3 /* http://bit-player.org/2008/the-end-of-the-number-line */
4
5 #include <stdio.h>
6
7 unsigned int s(unsigned int k)
8 {
9 if (k & 1) /* k is odd */
10 return k + 2;
11 else
12 if (k == 2)
13 return 1;
14 else
15 return 2 * s(k/2);
16 }
17
18 unsigned int main(void)
19 {
20 unsigned int i[255], j = 0, n;
21 FILE *fp;
22
23 if ((fp = fopen("x.in", "rt")) == NULL)
24 return 1;
25 do
26 {
27 fscanf(fp, "%u", &n);
28 i[j++] = n;
29 }
30 while (n != 0);
31 fclose(fp);
32 n = j - 1;
33 /* n is the number of positive integers in the input */
34
35 for (j = 0; j < n; j++)
36 printf("%u ", s(i[j]));
37 printf("\n");
38 return 0;
39 }

Page 9 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem D: String Substitution
Input File: d.in
Source File: d.c | d.cpp | d.java
Time Limit: 1 second

Problem Description
Write a program that uses the following algorithm:

1. Read an input string composed of digits, that is, characters belonging to the set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

2. Read the string from left to right and replace the first three consecutive identical digits (if
any) with one digit whose value is the sum of the three digits modulo 10.

3. Repeat step 2 until there are no more substrings of three consecutive identical digits.

4. Display the resulting string as output.

Input Format
The input starts with an integer N (with 0 < N < 255). This is followed by N lines of input cases.
Each input case is a string of d digits (with 0 < d < 255).

Output Format
The output has N lines of strings: the output strings in the same order as their corresponding
input strings.

Sample Input
3

0

012345678900112233445566778899

000001113399774441114555222999222222222111111111

Sample Output
0

012345678900112233445566778899

0123456789

Page 10 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Joel Noche
Institution: Ateneo de Naga University
Contact: jnoche@gbox.adnu.edu.ph

1 language: C
2
3 #include <stdio.h>
4
5 char s[255];
6 typedef enum {false, true} bool;
7
8 bool ss(void)
9 {
10 unsigned int j = 0, k;
11 bool r = false;
12
13 while (s[j])
14 {
15 if (s[j] == s[j+1] && s[j] == s[j+2])
16 {
17 s[j] = (char)(((unsigned int)(s[j]-’0’) * 3 % 10) + ’0’);
18 k = j;
19 while (s[k++])
20 s[k] = s[k+1];
21 k = j;
22 while (s[k++])
23 s[k] = s[k+1];
24 r = true;
25 }
26 j++;
27 }
28 return r;
29 }
30
31 unsigned int main(void)
32 {
33 unsigned int i, n;
34 FILE *fp;
35
36 if ((fp = fopen("y.in", "rt")) == NULL)
37 return 1;
38 fscanf(fp, "%u", &n);
39 for (i = 0; i < n; i++)
40 {
41 fscanf(fp, "%s", s);
42 while (ss());

Page 11 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

43 printf("%s\n", s);
44 }
45 fclose(fp);
46 return 0;
47 }

Page 12 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem E: Discover Weekly
Input File: e.in
Source File: e.c | e.cpp | e.java
Time Limit: 2 seconds

Problem Description
Early 2013, Spotify, the music app, launched a feature called, “Discover Weekly”. Every week,
each user would receive a recommended playlist composed of 30 songs based on the songs being
consumed by the user for the previous weeks. According to Matt Ogle, then lead engineer of
Spotify, the playlist should be a mix of familiar and new songs - Spotify’s RD team discovered
that if the playlist is too familiar, engagement with the playlist fell as users felt they were being
fed the same song each week. If the playlist is too new, engagement also dropped as the users
could not identify with the music being recommended.

Spotify’s solution was to base their Discover Weekly feature on what they call a ‘Collaborative
Filter’. “Each week, Spotify bots hunt through several billion playlists from users around the world
to see what songs are typically grouped together” (Hit Makers, The Science of Popularity in an
Age of Distraction, Derek Thompson).

If user Alpha listens to songs A, B and C, and the bots find that songs A, B, and C are typically
seen in other users’ playlists that also contain song K, then song K would appear in user Alpha’s
Discover Weekly playlist. Songs in the discover weekly playlist are arranged in non-ascending order
according to how frequent they appear together in a playlist containing the user’s preferred songs.
Songs with similar frequencies are arranged in alphabetical order.

Input Format
The input contains an integer T , where 0 < T < 100, followed by T test cases. Each test case
is composed of a string S, representing the name of the user, followed by three space separated
characters, C1, C2, and C3, where [C = A. . . Z] denoting the user’s top three most-listened-to
songs for the week. It is followed by an Integer P , where 0 < P < 100, denoting the number
of random playlists from which the discover weekly playlist would be based on. Each case P is
composed of an integer Q, representative of the number of songs in the playlist, followed by Q
number of songs, C’s.

Output Format
From the user’s top three songs, compose a discover weekly playlist of 5 songs. If the data isn’t
enough to create a playlist of 5 songs, insert an asterisk (∗) placeholder. Output format should be
the name of the user and the user’s discover weekly playlist separated by a colon (:). Assume it is
guaranteed that a playlist of at least 1 song can be created from the input.

Sample Input
3

Yuubi

A C F

3

Page 13 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

5 A C F X D

6 A C F V B X

6 A C F V H U

Armi

X G J

3

6 X G J K R M

6 X H U P O L

6 G T Y A U Q

Herschel

T A N

5

10 T A X M Y U I K L Q R J S

5 A X M P T N

7 N X M A T R J

4 T N A E

5 N U A T O

Sample Output
Yuubi : V X B D H

Armi : K M R * *

Herschel : M X E J P

Page 14 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Neithan Casano
Institution: Ateneo de Naga University
Contact: jonathancasano@gmail.com

The solution is straightforward as the steps have been outlined in the problem description. Since
songs are represented by letters A...Z, a 26-index array could be prepared and incremented per
song that gets read as input.

Afterwhich, the indexes could be sorted in non-ascending order and the top five entries could just
be printed out one after the other.

Gotchas:

1. The sorting should preserve lexicographical order. In the case of a tie between two songs,
the letter that should first be printed should be the one that comes first in lexicographical
ordering.

2. If the count of the songs does not reach 5, asterisks should be printed in place of letters.

Page 15 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem F: J’anne and Approximations
Input File: f.in
Source File: f.c | f.cpp | f.java
Time Limit: 1 second

Problem Description
Yesterday, I was trying to tutor my younger sister J’anne on finding the square root of a number.

I would ask, “Alright, J’anne. What’s the square root of 9?”. She would give me haphazard answers,
“One thousand!”, she would blurt out proudly. She was doing it on purpose; trying to mess with
me. This kept going for a few hours.

“Square root of 10?”, “450!”. “Square root of 14?”, “729!!”.

I decided to change my strategy. “Hey, J’anne. What if I told you I can get the correct square root
of a number starting from whatever insane incorrect answer you come up with?”.

She seemed interested. Her voice sounded intrigued, “You can do that? Even if I say the square
root of 25 is 1, 000, 000?”.

“Yes”, I answered, “There is a series of steps you just have to repeat to turn 1, 000, 000 to a 5 -
and it would be correct all the time!”.

“Yeah, right. Like Math is supposed to be THAT easy”, she responded with a tone.

I got my notebook and calculator, followed my steps, and within a few lines, given 25, I was able
to get 5, its correct square root, from 1, 000, 000 her over-the-board estimate.

J’anne snagged my notebook and looked at it deeply, as if trying to make sense of what just
happened. After a few moments, her gaze swiftly shifted towards me. . .

“This. . . teach me this! I need to know this.”, she insisted, in a cold commanding tone.

One of the ways to get the square root of a number x is to first come up with a guess y.

1. Divide the input number x, by the initial guess y, to acquire a quotient z

2. Get the average of z and y, to acquire y′, your new guess.

3. Divide x by the new guess y′ to get a new z′

4. Continue repeating steps 2 and 3 until the difference between y′ ∗y′ and x is less than 0.0001

5. Output y′ - this is now the correct square root

Say you’re looking for the square root of 9 and you start with a guess 5. The above steps would
generate this list of guesses.

• Step 1 - 9/5 = 1.80000

• Step 2 - average(5, 1.80000) = 3.40000

• Step 3 - 9/3.40000 = 2.65000

Page 16 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

• Step 2 - average(2.65000, 3.40000) = 3.02500

• Step 3 - 9/3.02500 = 2.97500

• Step 2 - average(2.97500, 3.02500) = 3

• Step 3 - 9/3 = 3.00000

• Step 4 - 3.00000 ∗ 3.00000 = 9(9− 9 is less then 0.0001)

• Step 5 - output 3.00000

Input Format
The input consists of an integer T , where 0 < T < 100, followed by T test cases. Each test case
is composed of a pair of integers N and J , the number you would have to get the square root of
and J’anne’s weird estimate, respectively. Operate under the following constraints: 0 < N < 100
and 0 < J < 1, 000, 001.

Output Format
Your program must output all guesses (y′) leading to the correct square root. The guesses should
be truncated off (not rounded off) to the nearest ten thousandths.

Sample Input
3

9 5

25 10

7 13

Sample Output
3.40000

3.02352

3.00009

3.00000

6.25000

5.12500

5.00152

5.00000

6.76923

3.90166

2.84788

2.65292

2.64576

Page 17 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Neithan Casano
Institution: Ateneo de Naga University
Contact: jonathancasano@gmail.com

This process of getting square roots is popularly known as Newton’s square root method. Below
is a solution written in Racket.

1 language: Racket
2
3 (define (good-enough? guess x)
4 (< (abs (- x (* guess guess))) 0.0001)
5 )
6
7 (define (average x y)
8 (/ (+ x y) 2)
9 )
10
11 (define (improve guess x)
12 (display (average (/ x guess) guess))
13 (newline)
14 (average (/ x guess) guess)
15 )
16
17 (define (nsqrt guess x)
18 (if (good-enough? guess x)
19 guess
20 (nsqrt (improve guess x) x))
21 )
22
23 (display (nsqrt 1000000.0 100.0))

Page 18 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem G: RPN Calculator
Input File: g.in
Source File: g.c | g.cpp | g.java
Time Limit: 1 second

Problem Description
Reverse Polish notation (RPN), also known as Polish postfix notation or simply postfix notation,
is a mathematical notation in which operators follow their operands. The notation is a way of
expressing arithmetic expressions that avoid the use of brackets (or parentheses) to define priorities
for evaluation of operators.

In ordinary notation, for example, we write (4 + 5)× (2− 3) and the brackets tell us that we add
4 to 5, then subtract 3 from 2, and multiply the results together, giving a final value of −9. In
RPN, the numbers and operators are listed one after another, and an operator always acts on the
most recent numbers in the list.

In RPN, the expression above will be 45 + 23−×. We apply + to 4 and 5 resulting to 9, − to 2
and 3, resulting to −1 and × to 9 and −1, resulting to a final value of −9.

Input Format
Each line in the input file is a mathematical expression in Reverse Polish Notation. A mathematical
expression contains numbers and the following operators: + (addition), − (subtraction),
×(multiplication),/(division), (exponentiation), and ∼ (unaryminusornegation).

Output Format
For each input line, print the result of evaluating the expression. Express the result as a real
number rounded to 2 decimal places.

Sample Input
4 5 + 2 3 - x

12 3 4 + -

1 20 3 4 x + -

5 3 +

40 2 ∼ /

15 7 1 1 + - / 3 x 2 1 1 + + -

Sample Output
-9.00

5.00

-31.75

4.74

-2.00

5.00

Page 19 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Rey Herman Vidallo
Institution: Ateneo de Naga University
Contact: rvidallo@gbox.adnu.edu.ph

This is a classic data structure problem on stacks. The basic algorithm is to push operands to
the stacks and if an operator op is encountered then pop operand y, pop operand x and evaluate
z = x op y. push z then to stack. if operator is unary ( ), pop one operand only. at the end of the
input, the value at top of stack is the final result.

1 language: C++
2
3 #include <iostream>
4 #include <sstream>
5 #include <fstream>
6 #include <stack>
7 #include <cstring>
8 #include <cmath>
9 #include <iomanip>
10
11 using namespace std;
12
13 int main(){
14 ifstream infile;
15 int n;
16 string line, inp;
17 stack<float> S;
18 float x, y, r;
19
20 infile.open("prob1.in");
21 while (getline(infile, line)){
22 istringstream ss(line);
23 while (ss >> inp)
24 if ((inp != "+") && (inp != "-") &&
25 (inp != "x") && (inp != "/") && (inp != "^") &&
26 (inp != "~"))
27 S.push(stof(inp));
28 else if (inp=="+"){
29 y = S.top(); S.pop();
30 x = S.top(); S.pop();
31 r = x + y;
32 S.push(r);
33 }
34 else if (inp=="-"){
35 y = S.top(); S.pop();
36 x = S.top(); S.pop();
37 r = x - y;

Page 20 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

38 S.push(r);
39 }
40 else if (inp=="x"){
41 y = S.top(); S.pop();
42 x = S.top(); S.pop();
43 r = x * y;
44 S.push(r);
45 }
46 else if (inp=="/"){
47 y = S.top(); S.pop();
48 x = S.top(); S.pop();
49 r = x / y;
50 S.push(r);
51
52 }
53 else if (inp=="^"){
54 y = S.top(); S.pop();
55 x = S.top(); S.pop();
56 r = pow(x,y);
57 S.push(r);
58 }
59 else if (inp=="~"){
60 x = S.top(); S.pop();
61 r = -1*x;
62 S.push(r);
63 }
64 cout.setf(ios::fixed);
65 cout << setprecision(2) << S.top() << endl;
66 }
67 infile.close();
68 return 0;
69 }

Page 21 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem H: (1,2)-Ulam #s
Input File: h.in
Source File: h.c | h.cpp | h.java
Time Limit: 3 second

Problem Description
We define the (1,2)-Ulam numbers by setting u1 = 1 and u2 = 2. Furthermore, after determining
whether the integers less than n are Ulam numbers, we set n equal to the next Ulam number if it
can be written uniquely as the sum of two different Ulam numbers.

Thus, the next Ulam number, u3, after the initial 1, 2 is obviously 3 since 3 = 1 + 2. The next
Ulam number, u4, is 4 since 4 = 1 + 3. 5 is not an Ulam number since 5 could be represented in
two ways: 5 = 1 + 4 and 5 = 2 + 3. Therefore, the next Ulam number, u5, is 6 because 6 = 2 + 4.

The first 10 (1-2)-Ulam numbers are 1, 2, 3, 4, 6, 8, 11, 13, 16, and 18. Because, there are infinitely
many (1,2)-Ulam numbers, we want to find ui, the ith (1,2)-Ulam number.

Input Format
The input file contains several input integers i , where 1 ≤ i ≤ 500 one integer per line.

Output Format
For each input integer i, print in a new line the integer i, followed by a space, followed by the ith
(1,2)-Ulam number.

Sample Input
5

10

1

20

233

45

Sample Output
5 6

10 18

1 1

20 69

233 2249

45 221

Page 22 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Rey Herman Vidallo
Institution: Ateneo de Naga University
Contact: rvidallo@gbox.adnu.edu.ph

The solution is to go through all integers x from 3 to infinity. If x is an Ulam number, add x to
the list of Ulam numbers

To check if x is an Ulam number, perform an exhaustive search on all previous Ulam numbers. if
any 2 previous Ulam numbers < x adds up to x, increment addcount x is an Ulam number only
if addcount == 1 after the exhaustive search.

1 language: C++
2
3 #include <iostream>
4 #include <fstream>
5
6 using namespace std;
7
8 int main(){
9
10 ifstream infile;
11
12 int ulam[500] = {0};
13 int u1 = 1, u2 = 2, i;
14 int x = 3;
15
16 int input;
17
18 ulam[0] = u1; ulam[1] = u2;
19 i = 2;
20 // generate the first 500 ulam numbers
21 in the sequence to speed up processing
22 do{
23 int add_count = 0;
24 for (int j=0; j < i; j++)
25 for (int k = j+1; k < i; k++){ //
26 if (ulam[j] + ulam[k] == x)
27 add_count++;
28 }
29 if (add_count==1){
30 ulam[i] = x;
31 i++;
32 }
33 x++;
34 }while (i < 500);
35

Page 23 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

36 infile.open("prob2.in");
37 while (infile >> input){
38 cout << input << " " << ulam[input-1] << endl;
39 }
40 infile.close();
41
42 return 0;
43
44 // line 24: check if x is the ith Ulam number, ulam[i], by
45 exhaustively checking if for any ulam[j] and ulam[k]
46 where j < i, k < i, ulam[j] + ulam[k] == x
47 }

Page 24 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem I: Mitch Diamond
Input File: i.in
Source File: i.c | i.cpp | i.java
Time Limit: 1 second

Problem Description
Mitch likes to collect small rocks and arrange them in a certain manner. At first, he starts with
putting one rock. In the next iterations, he would put rocks in the manner shown in the figure
below.

.---------------------------------------------------------------.
| | | | * |
| | | * | * * * |
| | * | * * * | * * * * * |
| * | * * * | * * * * * | * * * * * * * |
| | * | * * * | * * * * * |
| | | * | * * * |
| | | | * |
|---------------------------------------------------------------|
| Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 |
’---------------’-----------------------------------------------’

Given a number n, your task is to find out how many rocks Mitch would need to produce the
resulting pattern on the nth iteration.

Input Format
The input starts with an integer N , followed by N integers. The value of N is positive and will
not exceed 1, 001. Each of the N integers are non-negative numbers and will not exceed 1, 000.

Output Format
For each of the N integers, output the number of rocks required to produce the rock pattern of
Mitch.

Sample Input
3

0

2

4

Sample Output
0

5

25

Page 25 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Allan Sioson
Institution: Ateneo de Naga University
Contact: allan.sioson@gmail.com

The sequence is created by adding multiples for 4 to N, where N is the input integer.

1+4=5
5+8=13
13+12=25
25+16=41
41+20=61
61+24=85
and so on

The closed formula is as follows: (N+N) * (N-1) + 1

1 language: C++
2
3 # include <iostream>
4 using namespace std;
5
6 int main() {
7 int N = 0;
8 cin >> N;
9 for (int i = 0; i < N; i++) {
10 int n;
11 cin >> n;
12 cout << (1 + (n - 1) * (n + n)) << endl;
13 }
14 return 0;
15 }

Page 26 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Problem J: Work Together
Input File: j.in
Source File: j.c | j.cpp | j.java
Time Limit: 1 second

Problem Description
Fritz can finish painting an entire building in 5 days. Glenn can finish the same work in 5 days.
When they work together, they can finish the same task in 2.5 days.

Similarly, Bax can finish painting an entire building in 4 days, Mitch can finish the same work in
4 days, and John can finish the same work in 2 days. They finish the work in 1 day when they all
work together.

Write a program that determines the number of days a set of individuals can finish one particular
task if they work together given the estimate of time each can finish the same task individually.

Input Format
The input starts with the number of cases N , followed by N input lines. Each input line starts
with the number of individuals n followed by n estimated number of days each individual could
finish the same work independently.

The value of N cannot exceed 100. The number of individuals cannot exceed 10. The number of
days cannot exceed 30 days. All the numbers are positive.

Output Format
For each input line, output the number of days it would take the group to finish the job if they
work together. The output should be rounded to at least 3 decimal digits.

Sample Input
3

2 5 5

3 4 4 2

2 3 7

Sample Output
2.500

1.000

2.100

Page 27 of 28



Southern Luzon ACM-ICPC 2017 | Problems and Editorials
Ateneo de Naga University, October 1, 2017

Solution
Solution Author: Allan Sioson
Institution: Ateneo de Naga University
Contact: allan.sioson@gmail.com

Represent the amount of work done in terms of ratios i.e. 1/18 that is, 1 whole work can be finished
in 18 units of time (days, weeks, years etc.)

Add the ratios. The reciprocal of the sum will give the units of time when the work can be
finished together.

1 language: C++
2
3 # include <cstdio>
4 # include <iostream>
5 using namespace std;
6
7 int main() {
8 int N;
9 cin >> N;
10 for (int i = 0; i < N; i++) {
11 int n;
12 cin >> n;
13 long double sum = 0;
14 for (int j = 0; j < n; j++) {
15 long double x;
16 cin >> x;
17 sum += 1 / x;
18 }
19 printf("%2.3Lf\n", (1 / sum));
20 }
21 return 0;
22 }

Page 28 of 28


