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Abstract

We consider infinite binary sequences {c(k)};° defined by ¢(3n+ro) = 0, c(3n+r1) =
1, and ¢(3n + r.) = ¢(n) (where the r’s are distinct elements of {0, 1,2}) for all non-
negative integers n, and present a characteristic function for them. These sequences
are cube-free and any finite subsequence of one is either a subsequence of another or
the complement of a subsequence of another.
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1 Introduction

In 1995, Tan Stewart [4] presented the sequence
{s(k)}¥=001001011001001011001011011 ...,

which he calls the choral sequence, as an example of a cube-free (binary) sequence, one that
does not contain any subsequences of the form zzz, where x is a sequence of 0’s and 1’s.
This is sequence A116178 in Sloane’s Online Encyclopedia of Integer Sequences [3].

We define Stewart’s choral sequence {s(k)}" by s(3n) = 0, s(3n+2) = 1, and s(3n+1) =
s(n) for n € N={0,1,2,...}. (The presentation here differs slightly from Stewart’s. The
sequence he presented starts at s(1) and not s(0), and he used s(3n — 1) = 1 instead of
s(3n+2)=1.)

Definition 1. A generalized choral sequence is an infinite binary sequence {c(k)}q defined
by c(B3n+19) =0, c(3n+711) =1, and c¢(3n+r.) = c¢(n) where the r’s are distinct elements
0f{0,1,2} and n € N.

Note that if . = 0, then the sequence is not uniquely defined, that is, ¢(0) can be either
0orl.
The sequences of numbers we consider may also be thought of as words of letters.

Theorem 1. A generalized choral sequence {c(k)},” has a characteristic function

(k) = 1, if 3m,n € N such that & = 3" (3n +ry) + %5 (3™ —1);
AT 0, if 3m,n € N such that k = 3™ (3n + o) + % (3™ — 1).
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Proof. Setting m = 0 in ¢ (3™ (3n+ 1) + % (3™ — 1)) = 0 yields ¢(3n + r9) = 0 for all
n € N. Setting m = 0 in ¢ (3™ (3n+rq) —|— e (3™ — 1)) = 1 yields ¢(3n + r1) = 1 for all
n e N.

If ¢(k) = 1, then & = 3™ (3n+17r1) + & (3™ — 1) for some m,n € N and 3k + 7. =
3mT (3n+r1) + % (3™ —1). Thus, if ¢(k) = 1, then ¢(3k + r.) = 1. Similarly, it can be
shown that if ¢(k) = 0, then ¢(3k + r.) = 0. Thus, ¢(3n +1.) = ¢(n) for all n € N. O

Remark 1. c(k) is well defined for any k£ € N. Assume otherwise, that is, assume there exist
Mg, My, Na, Ny € N such that 3« (3n, + 1)+ % (3™ — 1) = 3™ (3ny + 1) + 5 (3™ —1).

If mg = my then 3n,+r1 = 3np+ro. But 3ng+r1 = r1 (mod 3) and 3ny+rg = ro (mod 3)
for any ng, np € N. Since 1 # rg (mod 3) then 3n, +r1 # 3ny + 1o for any ng,n, € N. Thus,
Mg 7# Mp.

If my > myg, then (3na +r + %) = 3™ Ma (Snb + 7o + %) and (6n, + 2r1 +r.) =
3me=Ma (Gny, 4+ 2rg + o). The right-hand side of the latter equation is a multiple of 3 but
the left-hand side is not a multiple of 3 since r1 and r. are distinct elements of {0,1,2}. (If
mg > My, a similar argument yields the same result.) This contradiction means our initial
assumption is wrong.

Example 1. The fixed point of the morphism specified by 0 — 010 and 1 — 011 iterated
on 0 is found in a tutorial by Berstel and Karhuméki [1] and is sequence A080846 in Sloane’s
OEIS [3]. It is a generalized choral sequence {z(k)},” with ro =0, ry =1, and r, = 2. Its
characteristic function is

(k) = 1, if 3m,n € N such that k =3™ (3n +1) + (3™ — 1);
W)= 0, if Im,n € N such that k = 3™ (3n) + (3™ — 1).

Example 2. Stewart’s choral sequence is the fixed point of the morphism specified by
0 +— 001 and 1 — 011 iterated on 0. (See, for example, [2].) It is a generalized choral
sequence {s(k)};~ with ro =0, r1 =2, and r, = 1. Its characteristic function is

1, if Im,n € N such that k =3™ (3n +2) +

S(k) _ ) (3m - 1) ;
0, if 3m,n € N such that k =3™ (3n) + 1 (3

1).

We mention in passing the following theorems which generalize Theorem 1.

1
2
m

Theorem 2. Let the infinite sequence {a( Vo be defined by a(fn+ 1) =0, a(ln +r,) =
a(n), and a(fn+mr11) =aln+ri2) =---=alln+rie_2) =1 for alln € N (where the r’s
are distinct elements of {0,1,...,¢ — 1}) The sequence has a characteristic function

(k) = 0, if 3m,n € N such that k = 0™ (fn +ro) + 772 ({™ — 1);
ar) = 1, otherwise.

Theorem 3. Let the infinite sequence {b(k)}o~ be defined by b(fn+r1) = 1, b(fn+ry) = b(n),
and b(fn +191) = b(fn+192) = -+ =b(ln+roe_2) =0 for all n € N (where the r’s are
distinct elements of {0,1,...,£ —1}). The sequence has a characteristic function

b(k) = 1, if Im,n € N such that k = €™ (bn + 1) + 725 (0™ — 1)
“ 1 0, otherwise.

The proofs are similar to that of Theorem 1.
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2 Some Properties

Lemma 1. A generalized choral sequence {c(k)}y~ has all the subsequences 001, 010, 011,
100, 101, and 110.

Proof. There are two cases: either r. + 1 = ¢ (mod 3) and 7. + 2 = r; (mod 3), or
re+1=r; (mod 3) and r. + 2 = ry (mod 3).

In the first case, there exists a subsequence c(3n+r.+1)c(3n+r.+2)c(3n+r.+3)c(3n+
re+4)c(Bn+r.+5) =01lc(n+1)01 for some n € N. That is, there exist subsequences
01001 and 01101. These two subsequences contain all the subsequences 001, 010, 011, 100,
101, and 110.

In the second case, there exists a subsequence c¢(3n + r. + 1)c(3n + re + 2)c(3n + r. +
3eBn + 1. +4)c(Bn+ 1. +5) = 10¢(n 4+ 1)10 for some n € N. That is, there exist
subsequences 10010 and 10110. These two subsequences contain all the subsequences 001,
010, 011, 100, 101, and 110. O

Theorem 4. A generalized choral sequence v = {c(k)}o is cube-free.

Proof. The proof here is practically the same as Stewart’s [4] with some ideas taken from
Berstel and Karhumaéki [1].

Assume there is a cube zzz in v. Denote the length of the sequence x by |z|.

Any three consecutive terms of v must have the terms c(kg) = 0 and c¢(k1) = 1 where
ko = ro(mod3) and k; = r1 (mod3). Thus, 000 and 111 are not subsequences of v and
2l # 1.

From the discussion in the proof of Lemma 1, any nine consecutive terms of v must have
a subsequence either of the form ¢(k)01c(k + 1)01c(k + 2) or of the form c(k)10c(k +
1)10¢(k 4 2). Since c(k), c¢(k + 1), and c(k + 2) are not all the same for any k& € N, then
|z| # 3. We may restate this result as || = 3 if and only if there exists a cube yyy with
|yl = 1. Since there is no cube yyy with |y| = 1, then |z| # 3.

Any 9p consecutive terms of v, where p is a positive integer, must have a subsequence
either of the form ¢(k) 01 ¢(k+1)...01¢(k+3p—1) or of the form ¢(k) 10c(k+1)...10c(k+
3p — 1). Thus, |z| = 3p if and only if there exists a cube yyy with |y| = p.

The word z starts at c(k), c(k + |z|), and c¢(k + 2|z|) for some k € N. If |z| is not a
multiple of 3, then k, k + |z|, and k + 2|z| take all the possible values modulo 3 and c(k),
c(k + |z]), and c(k + 2|x|) cannot all be the same. Thus, |z| is a multiple of 3.

If |x| is a positive multiple of 3, then it can be expressed as 3% - b, where a is a positive
integer and b is a positive integer that is not a multiple of 3. Since |z| = 3p if and only if
there exists a cube yyy with |y| = p, we may use this repeatedly to get the result that there
exists a cube yyy with |y| = b. This contradicts our earlier result that if there exists a cube
yyy, then |y| is a multiple of 3. Therefore, |z| is not a positive multiple of 3.

Thus, |z| = 0 and v is cube-free. O

Theorem 5. Let v = {c,(k)};” and w = {cy,(k)}~ be generalized choral sequences such
that r. +1 = rg (mod 3) and r. +2 = r; (mod 3) for both. Any finite subsequence of v is
also a subsequence of w.

Proof. By Theorem 4, 000 and 111 are not subsequences of v or w. By Lemma 1, all
the other three-term binary sequences are subsequences of v and w. Thus, any three-term
subsequence of v is also a subsequence of w. That is, for a given k,, there exists a k,, such
that ¢, (ky)cy(ky + 1) ey (ko + 2) = ey (bw)cw (kw + 1) cw (kuw + 2).
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For a given k,, the sequence ¢,(k,)01¢,(ky, + 1)01¢,(ky + 2) is a subsequence of v.
Similarly, for some k,,, the sequence ¢, (ky) 01 ¢y (ky +1) 01 ¢y (ky + 2) is a subsequence of
w. By the previous discussion, there exists a k,, such that ¢, (ky) 01 ¢y (kyw+1) 01 ¢y (b +2)
is a subsequence of w which is the same as ¢, (ky) 01 ¢, (ky +1) 01 ¢y (ky + 2).

Consequently, for a given k, there exists a k,, such that ¢, (ky)01cy(ky +1)---01
cw(kyw + 6) is a subsequence of w which is the same as ¢, (ky) 01 ¢y (ky +1) - 01 ¢y (ky +6),
a subsequence of v.

We can extend this reasoning to arbitrarily long finite sequences of similar form. Any
finite subsequence of v is a subsequence of a sequence of this form. Thus, any finite subse-
quence of v is also a subsequence of w. O

Theorem 6. Let v and w be generalized choral sequences such that r. +1 = r1 (mod 3)
and 1. +2 =19 (mod 3) for both. Any finite subsequence of v is also a subsequence of w.

The proof of Theorem 6 is similar to that of Theorem 5, but now sequences of the form
c(k)10c(k+1)10c(k + 2) are considered.

Definition 2. We define the complement of a binary sequence x to be the sequence T
obtained by replacing each 0 in x with a 1, and each 1 in x with a 0.

Corollary 1. Let v and w be generalized choral sequences. Any finite subsequence of v is
either a subsequence of w or the complement of a subsequence of w.

Proof. If v and w satisfy the conditions of Theorem 5 or of Theorem 6, then any finite
subsequence of v is a subsequence of w.

Otherwise, one of them, say v, has r. + 1 = rg (mod 3) and 7. + 2 = r; (mod 3) and
the other one, say w, has r. +1 =r; (mod 3) and r. + 2 = rg (mod 3). By Lemma 1, any
three-term subsequence of v is the complement of a subsequence of w. That is, for a given
k., there exists a ki, such that c,(ky)cy(ky + 1)cy(ky + 2) = G (k)G (kw + 1) (ke + 2).

Furthermore, there exists a subsequence of w ¢y, (k) 10 ¢y (K + 1) 10 ¢y (ko + 2) whose
complement €, (ky,) 10Cy, (ky+1) 10C, (ky+2) is the same as ¢, (ky) 01 ¢y (ky +1) 01 ¢y (ky+
2), a subsequence of v.

Extending this reasoning to arbitrarily long finite sequences of similar form yields the
result that any finite subsequence of v is the complement of a subsequence of w. O
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