Generalized Choral Sequences

JOEL REYES NOCHE Department of Mathematics and Natural Sciences Ateneo de Naga University Naga City, Camarines Sur, Philippines email: jrnoche@adnu.edu.ph

Abstract

We consider infinite binary sequences $\{c(k)\}_0^\infty$ defined by $c(3n+r_0) = 0$, $c(3n+r_1) = 1$, and $c(3n + r_c) = c(n)$ (where the r's are distinct elements of $\{0, 1, 2\}$) for all non-negative integers n, and present a characteristic function for them. These sequences are cube-free and any finite subsequence of one is either a subsequence of another or the complement of a subsequence of another.

Keywords: cube-free, choral sequence

1 Introduction

In 1995, Ian Stewart [4] presented the sequence

 $\{s(k)\}_0^{\infty} = 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ \dots,$

which he calls the choral sequence, as an example of a cube-free (binary) sequence, one that does not contain any subsequences of the form xxx, where x is a sequence of 0's and 1's. This is sequence A116178 in Sloane's Online Encyclopedia of Integer Sequences [3].

We define Stewart's choral sequence $\{s(k)\}_0^\infty$ by s(3n) = 0, s(3n+2) = 1, and s(3n+1) = s(n) for $n \in \mathbb{N} = \{0, 1, 2, ...\}$. (The presentation here differs slightly from Stewart's. The sequence he presented starts at s(1) and not s(0), and he used s(3n-1) = 1 instead of s(3n+2) = 1.)

Definition 1. A generalized choral sequence is an infinite binary sequence $\{c(k)\}_0^\infty$ defined by $c(3n + r_0) = 0$, $c(3n + r_1) = 1$, and $c(3n + r_c) = c(n)$ where the r's are distinct elements of $\{0, 1, 2\}$ and $n \in \mathbb{N}$.

Note that if $r_c = 0$, then the sequence is not uniquely defined, that is, c(0) can be either 0 or 1.

The sequences of numbers we consider may also be thought of as words of letters.

Theorem 1. A generalized choral sequence $\{c(k)\}_{0}^{\infty}$ has a characteristic function

 $c(k) = \begin{cases} 1, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = 3^m \left(3n + r_1\right) + \frac{r_c}{2} \left(3^m - 1\right); \\ 0, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = 3^m \left(3n + r_0\right) + \frac{r_c}{2} \left(3^m - 1\right). \end{cases}$

Proof. Setting m = 0 in $c\left(3^m(3n+r_0) + \frac{r_c}{2}(3^m-1)\right) = 0$ yields $c(3n+r_0) = 0$ for all $n \in \mathbb{N}$. Setting m = 0 in $c\left(3^m(3n+r_1) + \frac{r_c}{2}(3^m-1)\right) = 1$ yields $c(3n+r_1) = 1$ for all $n \in \mathbb{N}$.

If c(k) = 1, then $k = 3^m (3n + r_1) + \frac{r_c}{2} (3^m - 1)$ for some $m, n \in \mathbb{N}$ and $3k + r_c = 3^{m+1} (3n + r_1) + \frac{r_c}{2} (3^{m+1} - 1)$. Thus, if c(k) = 1, then $c(3k + r_c) = 1$. Similarly, it can be shown that if c(k) = 0, then $c(3k + r_c) = 0$. Thus, $c(3n + r_c) = c(n)$ for all $n \in \mathbb{N}$.

Remark 1. c(k) is well defined for any $k \in \mathbb{N}$. Assume otherwise, that is, assume there exist $m_a, m_b, n_a, n_b \in \mathbb{N}$ such that $3^{m_a}(3n_a + r_1) + \frac{r_c}{2}(3^{m_a} - 1) = 3^{m_b}(3n_b + r_0) + \frac{r_c}{2}(3^{m_b} - 1)$.

If $m_a = m_b$ then $3n_a + r_1 = 3n_b + r_0$. But $3n_a + r_1 \equiv r_1 \pmod{3}$ and $3n_b + r_0 \equiv r_0 \pmod{3}$ for any $n_a, n_b \in \mathbb{N}$. Since $r_1 \not\equiv r_0 \pmod{3}$ then $3n_a + r_1 \not\equiv 3n_b + r_0$ for any $n_a, n_b \in \mathbb{N}$. Thus, $m_a \not\equiv m_b$.

If $m_b > m_a$, then $(3n_a + r_1 + \frac{r_c}{2}) = 3^{m_b - m_a} (3n_b + r_0 + \frac{r_c}{2})$ and $(6n_a + 2r_1 + r_c) = 3^{m_b - m_a} (6n_b + 2r_0 + r_c)$. The right-hand side of the latter equation is a multiple of 3 but the left-hand side is not a multiple of 3 since r_1 and r_c are distinct elements of $\{0, 1, 2\}$. (If $m_a > m_b$, a similar argument yields the same result.) This contradiction means our initial assumption is wrong.

Example 1. The fixed point of the morphism specified by $0 \mapsto 010$ and $1 \mapsto 011$ iterated on 0 is found in a tutorial by Berstel and Karhumäki [1] and is sequence A080846 in Sloane's OEIS [3]. It is a generalized choral sequence $\{z(k)\}_0^\infty$ with $r_0 = 0$, $r_1 = 1$, and $r_c = 2$. Its characteristic function is

$$z(k) = \begin{cases} 1, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = 3^m (3n+1) + (3^m - 1) \\ 0, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = 3^m (3n) + (3^m - 1) . \end{cases}$$

Example 2. Stewart's choral sequence is the fixed point of the morphism specified by $0 \mapsto 001$ and $1 \mapsto 011$ iterated on 0. (See, for example, [2].) It is a generalized choral sequence $\{s(k)\}_0^\infty$ with $r_0 = 0$, $r_1 = 2$, and $r_c = 1$. Its characteristic function is

$$s(k) = \begin{cases} 1, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = 3^m (3n+2) + \frac{1}{2} (3^m - 1); \\ 0, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = 3^m (3n) + \frac{1}{2} (3^m - 1). \end{cases}$$

We mention in passing the following theorems which generalize Theorem 1.

Theorem 2. Let the infinite sequence $\{a(k)\}_0^\infty$ be defined by $a(\ell n + r_0) = 0$, $a(\ell n + r_a) = a(n)$, and $a(\ell n + r_{1,1}) = a(\ell n + r_{1,2}) = \cdots = a(\ell n + r_{1,\ell-2}) = 1$ for all $n \in \mathbb{N}$ (where the r's are distinct elements of $\{0, 1, \ldots, \ell - 1\}$). The sequence has a characteristic function

$$a(k) = \begin{cases} 0, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = \ell^m \left(\ell n + r_0\right) + \frac{r_a}{\ell - 1} \left(\ell^m - 1\right); \\ 1, & \text{otherwise.} \end{cases}$$

Theorem 3. Let the infinite sequence $\{b(k)\}_0^\infty$ be defined by $b(\ell n+r_1) = 1$, $b(\ell n+r_b) = b(n)$, and $b(\ell n+r_{0,1}) = b(\ell n+r_{0,2}) = \cdots = b(\ell n+r_{0,\ell-2}) = 0$ for all $n \in \mathbb{N}$ (where the r's are distinct elements of $\{0, 1, \ldots, \ell-1\}$). The sequence has a characteristic function

$$b(k) = \begin{cases} 1, & \text{if } \exists m, n \in \mathbb{N} \text{ such that } k = \ell^m \left(\ell n + r_1\right) + \frac{r_b}{\ell - 1} \left(\ell^m - 1\right); \\ 0, & \text{otherwise.} \end{cases}$$

The proofs are similar to that of Theorem 1.

2 Some Properties

Lemma 1. A generalized choral sequence $\{c(k)\}_0^\infty$ has all the subsequences 001, 010, 011, 100, 101, and 110.

Proof. There are two cases: either $r_c + 1 \equiv r_0 \pmod{3}$ and $r_c + 2 \equiv r_1 \pmod{3}$, or $r_c + 1 \equiv r_1 \pmod{3}$ and $r_c + 2 \equiv r_0 \pmod{3}$.

In the first case, there exists a subsequence $c(3n+r_c+1)c(3n+r_c+2)c(3n+r_c+3)c(3n+r_c+4)c(3n+r_c+5) = 01c(n+1)01$ for some $n \in \mathbb{N}$. That is, there exist subsequences 01001 and 01101. These two subsequences contain all the subsequences 001, 010, 011, 100, 101, and 110.

In the second case, there exists a subsequence $c(3n + r_c + 1)c(3n + r_c + 2)c(3n + r_c + 3)c(3n + r_c + 4)c(3n + r_c + 5) = 10c(n + 1)10$ for some $n \in \mathbb{N}$. That is, there exist subsequences 10010 and 10110. These two subsequences contain all the subsequences 001, 010, 011, 100, 101, and 110.

Theorem 4. A generalized choral sequence $v = \{c(k)\}_0^\infty$ is cube-free.

Proof. The proof here is practically the same as Stewart's [4] with some ideas taken from Berstel and Karhumäki [1].

Assume there is a cube xxx in v. Denote the length of the sequence x by |x|.

Any three consecutive terms of v must have the terms $c(k_0) = 0$ and $c(k_1) = 1$ where $k_0 \equiv r_0 \pmod{3}$ and $k_1 \equiv r_1 \pmod{3}$. Thus, 000 and 111 are not subsequences of v and $|x| \neq 1$.

From the discussion in the proof of Lemma 1, any nine consecutive terms of v must have a subsequence either of the form c(k) 0 1 c(k+1) 0 1 c(k+2) or of the form c(k) 1 0 c(k+1) 1 0 c(k+2). Since c(k), c(k+1), and c(k+2) are not all the same for any $k \in \mathbb{N}$, then $|x| \neq 3$. We may restate this result as |x| = 3 if and only if there exists a cube yyy with |y| = 1. Since there is no cube yyy with |y| = 1, then $|x| \neq 3$.

Any 9p consecutive terms of v, where p is a positive integer, must have a subsequence either of the form $c(k) \ 0 \ 1 \ c(k+1) \dots 0 \ 1 \ c(k+3p-1)$ or of the form $c(k) \ 1 \ 0 \ c(k+1) \dots 1 \ 0 \ c(k+3p-1)$. Thus, |x| = 3p if and only if there exists a cube yyy with |y| = p.

The word x starts at c(k), c(k + |x|), and c(k + 2|x|) for some $k \in \mathbb{N}$. If |x| is not a multiple of 3, then k, k + |x|, and k + 2|x| take all the possible values modulo 3 and c(k), c(k + |x|), and c(k + 2|x|) cannot all be the same. Thus, |x| is a multiple of 3.

If |x| is a positive multiple of 3, then it can be expressed as $3^a \cdot b$, where *a* is a positive integer and *b* is a positive integer that is not a multiple of 3. Since |x| = 3p if and only if there exists a cube yyy with |y| = p, we may use this repeatedly to get the result that there exists a cube yyy with |y| = b. This contradicts our earlier result that if there exists a cube yyy, then |y| is a multiple of 3. Therefore, |x| is not a positive multiple of 3.

Thus, |x| = 0 and v is cube-free.

Theorem 5. Let $v = \{c_v(k)\}_0^\infty$ and $w = \{c_w(k)\}_0^\infty$ be generalized choral sequences such that $r_c + 1 \equiv r_0 \pmod{3}$ and $r_c + 2 \equiv r_1 \pmod{3}$ for both. Any finite subsequence of v is also a subsequence of w.

Proof. By Theorem 4, 000 and 111 are not subsequences of v or w. By Lemma 1, all the other three-term binary sequences are subsequences of v and w. Thus, any three-term subsequence of v is also a subsequence of w. That is, for a given k_v , there exists a k_w such that $c_v(k_v)c_v(k_v+1)c_v(k_v+2) = c_w(k_w)c_w(k_w+1)c_w(k_w+2)$.

For a given k_v , the sequence $c_v(k_v) 0 \ 1 \ c_v(k_v + 1) 0 \ 1 \ c_v(k_v + 2)$ is a subsequence of v. Similarly, for some k_w , the sequence $c_w(k_w) 0 \ 1 \ c_w(k_w + 1) 0 \ 1 \ c_w(k_w + 2)$ is a subsequence of w. By the previous discussion, there exists a k_w such that $c_w(k_w) 0 \ 1 \ c_w(k_w + 1) 0 \ 1 \ c_w(k_w + 2)$ is a subsequence of w which is the same as $c_v(k_v) 0 \ 1 \ c_v(k_v + 1) 0 \ 1 \ c_v(k_v + 2)$.

Consequently, for a given k_v there exists a k_w such that $c_w(k_w) 0 \ 1 \ c_w(k_w + 1) \cdots 0 \ 1 \ c_w(k_w + 6)$ is a subsequence of w which is the same as $c_v(k_v) 0 \ 1 \ c_v(k_v + 1) \cdots 0 \ 1 \ c_v(k_v + 6)$, a subsequence of v.

We can extend this reasoning to arbitrarily long finite sequences of similar form. Any finite subsequence of v is a subsequence of a sequence of this form. Thus, any finite subsequence of v is also a subsequence of w.

Theorem 6. Let v and w be generalized choral sequences such that $r_c + 1 \equiv r_1 \pmod{3}$ and $r_c + 2 \equiv r_0 \pmod{3}$ for both. Any finite subsequence of v is also a subsequence of w.

The proof of Theorem 6 is similar to that of Theorem 5, but now sequences of the form c(k) 10 c(k+1) 10 c(k+2) are considered.

Definition 2. We define the complement of a binary sequence x to be the sequence \overline{x} obtained by replacing each 0 in x with a 1, and each 1 in x with a 0.

Corollary 1. Let v and w be generalized choral sequences. Any finite subsequence of v is either a subsequence of w or the complement of a subsequence of w.

Proof. If v and w satisfy the conditions of Theorem 5 or of Theorem 6, then any finite subsequence of v is a subsequence of w.

Otherwise, one of them, say v, has $r_c + 1 \equiv r_0 \pmod{3}$ and $r_c + 2 \equiv r_1 \pmod{3}$ and the other one, say w, has $r_c + 1 \equiv r_1 \pmod{3}$ and $r_c + 2 \equiv r_0 \pmod{3}$. By Lemma 1, any three-term subsequence of v is the complement of a subsequence of w. That is, for a given k_v , there exists a k_w such that $c_v(k_v)c_v(k_v + 1)c_v(k_v + 2) = \overline{c}_w(k_w)\overline{c}_w(k_w + 1)\overline{c}_w(k_w + 2)$.

Furthermore, there exists a subsequence of $w c_w(k_w) 10 c_w(k_w+1) 10 c_w(k_w+2)$ whose complement $\overline{c}_w(k_w) \overline{10} \overline{c}_w(k_w+1) \overline{10} \overline{c}_w(k_w+2)$ is the same as $c_v(k_v) 01 c_v(k_v+1) 01 c_v(k_v+2)$, a subsequence of v.

Extending this reasoning to arbitrarily long finite sequences of similar form yields the result that any finite subsequence of v is the complement of a subsequence of w.

Acknowledgment. I thank an anonymous colleague for suggesting the generalizations in Theorems 2 and 3.

References

- J. Berstel and J. Karhumäki, Combinatorics on words—A tutorial, Bulletin of the European Association of Theoretical Computer Science (79) (2003), 178-228.
- [2] J. Noche, On Stewart's choral sequence, *Gibón*, **8(1)** (2008), 1–5.
- [3] N. Sloane, The on-line encyclopedia of integer sequences, (2007), www.research. att.com/~njas/sequences/.
- [4] I. Stewart, Mathematical recreations: The never-ending chess game, Scientific American, 273(4) (1995), 158, 160.