Generalized Choral Sequences

Joel Reyes Noche
Department of Mathematics and Natural Sciences
Ateneo de Naga University
Naga City, Camarines Sur, Philippines
email: jrnoche@adnu.edu.ph

Abstract

We consider infinite binary sequences $\{c(k)\}_{0}^{\infty}$ defined by $c\left(3 n+r_{0}\right)=0, c\left(3 n+r_{1}\right)=$ 1 , and $c\left(3 n+r_{c}\right)=c(n)$ (where the r 's are distinct elements of $\{0,1,2\}$) for all nonnegative integers n, and present a characteristic function for them. These sequences are cube-free and any finite subsequence of one is either a subsequence of another or the complement of a subsequence of another.

Keywords: cube-free, choral sequence

1 Introduction

In 1995, Ian Stewart [4] presented the sequence

$$
\{s(k)\}_{0}^{\infty}=001001011001001011001011011 \ldots,
$$

which he calls the choral sequence, as an example of a cube-free (binary) sequence, one that does not contain any subsequences of the form $x x x$, where x is a sequence of 0 's and 1's. This is sequence A116178 in Sloane's Online Encyclopedia of Integer Sequences [3].

We define Stewart's choral sequence $\{s(k)\}_{0}^{\infty}$ by $s(3 n)=0, s(3 n+2)=1$, and $s(3 n+1)=$ $s(n)$ for $n \in \mathbb{N}=\{0,1,2, \ldots\}$. (The presentation here differs slightly from Stewart's. The sequence he presented starts at $s(1)$ and not $s(0)$, and he used $s(3 n-1)=1$ instead of $s(3 n+2)=1$.)
Definition 1. A generalized choral sequence is an infinite binary sequence $\{c(k)\}_{0}^{\infty}$ defined by $c\left(3 n+r_{0}\right)=0, c\left(3 n+r_{1}\right)=1$, and $c\left(3 n+r_{c}\right)=c(n)$ where the r 's are distinct elements of $\{0,1,2\}$ and $n \in \mathbb{N}$.

Note that if $r_{c}=0$, then the sequence is not uniquely defined, that is, $c(0)$ can be either 0 or 1.

The sequences of numbers we consider may also be thought of as words of letters.
Theorem 1. A generalized choral sequence $\{c(k)\}_{0}^{\infty}$ has a characteristic function

$$
c(k)= \begin{cases}1, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=3^{m}\left(3 n+r_{1}\right)+\frac{r_{c}}{2}\left(3^{m}-1\right) \\ 0, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=3^{m}\left(3 n+r_{0}\right)+\frac{r_{c}}{2}\left(3^{m}-1\right) .\end{cases}
$$

Proof. Setting $m=0$ in $c\left(3^{m}\left(3 n+r_{0}\right)+\frac{r_{c}}{2}\left(3^{m}-1\right)\right)=0$ yields $c\left(3 n+r_{0}\right)=0$ for all $n \in \mathbb{N}$. Setting $m=0$ in $c\left(3^{m}\left(3 n+r_{1}\right)+\frac{r_{c}}{2}\left(3^{m}-1\right)\right)=1$ yields $c\left(3 n+r_{1}\right)=1$ for all $n \in \mathbb{N}$.

If $c(k)=1$, then $k=3^{m}\left(3 n+r_{1}\right)+\frac{r_{c}}{2}\left(3^{m}-1\right)$ for some $m, n \in \mathbb{N}$ and $3 k+r_{c}=$ $3^{m+1}\left(3 n+r_{1}\right)+\frac{r_{c}}{2}\left(3^{m+1}-1\right)$. Thus, if $c(k)=1$, then $c\left(3 k+r_{c}\right)=1$. Similarly, it can be shown that if $c(k)=0$, then $c\left(3 k+r_{c}\right)=0$. Thus, $c\left(3 n+r_{c}\right)=c(n)$ for all $n \in \mathbb{N}$.

Remark 1. $c(k)$ is well defined for any $k \in \mathbb{N}$. Assume otherwise, that is, assume there exist $m_{a}, m_{b}, n_{a}, n_{b} \in \mathbb{N}$ such that $3^{m_{a}}\left(3 n_{a}+r_{1}\right)+\frac{r_{c}}{2}\left(3^{m_{a}}-1\right)=3^{m_{b}}\left(3 n_{b}+r_{0}\right)+\frac{r_{c}}{2}\left(3^{m_{b}}-1\right)$.

If $m_{a}=m_{b}$ then $3 n_{a}+r_{1}=3 n_{b}+r_{0}$. But $3 n_{a}+r_{1} \equiv r_{1}(\bmod 3)$ and $3 n_{b}+r_{0} \equiv r_{0}(\bmod 3)$ for any $n_{a}, n_{b} \in \mathbb{N}$. Since $r_{1} \not \equiv r_{0}(\bmod 3)$ then $3 n_{a}+r_{1} \neq 3 n_{b}+r_{0}$ for any $n_{a}, n_{b} \in \mathbb{N}$. Thus, $m_{a} \neq m_{b}$.

If $m_{b}>m_{a}$, then $\left(3 n_{a}+r_{1}+\frac{r_{c}}{2}\right)=3^{m_{b}-m_{a}}\left(3 n_{b}+r_{0}+\frac{r_{c}}{2}\right)$ and $\left(6 n_{a}+2 r_{1}+r_{c}\right)=$ $3^{m_{b}-m_{a}}\left(6 n_{b}+2 r_{0}+r_{c}\right)$. The right-hand side of the latter equation is a multiple of 3 but the left-hand side is not a multiple of 3 since r_{1} and r_{c} are distinct elements of $\{0,1,2\}$. (If $m_{a}>m_{b}$, a similar argument yields the same result.) This contradiction means our initial assumption is wrong.

Example 1. The fixed point of the morphism specified by $0 \mapsto 010$ and $1 \mapsto 011$ iterated on 0 is found in a tutorial by Berstel and Karhumäki [1] and is sequence A080846 in Sloane's OEIS [3]. It is a generalized choral sequence $\{z(k)\}_{0}^{\infty}$ with $r_{0}=0, r_{1}=1$, and $r_{c}=2$. Its characteristic function is

$$
z(k)= \begin{cases}1, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=3^{m}(3 n+1)+\left(3^{m}-1\right) \\ 0, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=3^{m}(3 n)+\left(3^{m}-1\right)\end{cases}
$$

Example 2. Stewart's choral sequence is the fixed point of the morphism specified by $0 \mapsto 001$ and $1 \mapsto 011$ iterated on 0 . (See, for example, [2].) It is a generalized choral sequence $\{s(k)\}_{0}^{\infty}$ with $r_{0}=0, r_{1}=2$, and $r_{c}=1$. Its characteristic function is

$$
s(k)= \begin{cases}1, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=3^{m}(3 n+2)+\frac{1}{2}\left(3^{m}-1\right) \\ 0, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=3^{m}(3 n)+\frac{1}{2}\left(3^{m}-1\right)\end{cases}
$$

We mention in passing the following theorems which generalize Theorem 1.
Theorem 2. Let the infinite sequence $\{a(k)\}_{0}^{\infty}$ be defined by $a\left(\ell n+r_{0}\right)=0, a\left(\ell n+r_{a}\right)=$ $a(n)$, and $a\left(\ell n+r_{1,1}\right)=a\left(\ell n+r_{1,2}\right)=\cdots=a\left(\ell n+r_{1, \ell-2}\right)=1$ for all $n \in \mathbb{N}$ (where the r 's are distinct elements of $\{0,1, \ldots, \ell-1\})$. The sequence has a characteristic function

$$
a(k)= \begin{cases}0, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=\ell^{m}\left(\ell n+r_{0}\right)+\frac{r_{a}}{\ell-1}\left(\ell^{m}-1\right) \\ 1, & \text { otherwise }\end{cases}
$$

Theorem 3. Let the infinite sequence $\{b(k)\}_{0}^{\infty}$ be defined by $b\left(\ell n+r_{1}\right)=1, b\left(\ell n+r_{b}\right)=b(n)$, and $b\left(\ell n+r_{0,1}\right)=b\left(\ell n+r_{0,2}\right)=\cdots=b\left(\ell n+r_{0, \ell-2}\right)=0$ for all $n \in \mathbb{N}$ (where the r 's are distinct elements of $\{0,1, \ldots, \ell-1\}$). The sequence has a characteristic function

$$
b(k)= \begin{cases}1, & \text { if } \exists m, n \in \mathbb{N} \text { such that } k=\ell^{m}\left(\ell n+r_{1}\right)+\frac{r_{b}}{\ell-1}\left(\ell^{m}-1\right) \\ 0, & \text { otherwise }\end{cases}
$$

The proofs are similar to that of Theorem 1.

2 Some Properties

Lemma 1. A generalized choral sequence $\{c(k)\}_{0}^{\infty}$ has all the subsequences $001,010,011$, 100, 101, and 110.

Proof. There are two cases: either $r_{c}+1 \equiv r_{0}(\bmod 3)$ and $r_{c}+2 \equiv r_{1}(\bmod 3)$, or $r_{c}+1 \equiv r_{1}(\bmod 3)$ and $r_{c}+2 \equiv r_{0}(\bmod 3)$.

In the first case, there exists a subsequence $c\left(3 n+r_{c}+1\right) c\left(3 n+r_{c}+2\right) c\left(3 n+r_{c}+3\right) c(3 n+$ $\left.r_{c}+4\right) c\left(3 n+r_{c}+5\right)=01 c(n+1) 01$ for some $n \in \mathbb{N}$. That is, there exist subsequences 01001 and 01101 . These two subsequences contain all the subsequences $001,010,011,100$, 101 , and 110.

In the second case, there exists a subsequence $c\left(3 n+r_{c}+1\right) c\left(3 n+r_{c}+2\right) c\left(3 n+r_{c}+\right.$ $3) c\left(3 n+r_{c}+4\right) c\left(3 n+r_{c}+5\right)=10 c(n+1) 10$ for some $n \in \mathbb{N}$. That is, there exist subsequences 10010 and 10110. These two subsequences contain all the subsequences 001 , $010,011,100,101$, and 110.

Theorem 4. A generalized choral sequence $v=\{c(k)\}_{0}^{\infty}$ is cube-free.
Proof. The proof here is practically the same as Stewart's [4] with some ideas taken from Berstel and Karhumäki [1].

Assume there is a cube $x x x$ in v. Denote the length of the sequence x by $|x|$.
Any three consecutive terms of v must have the terms $c\left(k_{0}\right)=0$ and $c\left(k_{1}\right)=1$ where $k_{0} \equiv r_{0}(\bmod 3)$ and $k_{1} \equiv r_{1}(\bmod 3)$. Thus, 000 and 111 are not subsequences of v and $|x| \neq 1$.

From the discussion in the proof of Lemma 1, any nine consecutive terms of v must have a subsequence either of the form $c(k) 01 c(k+1) 01 c(k+2)$ or of the form $c(k) 10 c(k+$ 1) $10 c(k+2)$. Since $c(k), c(k+1)$, and $c(k+2)$ are not all the same for any $k \in \mathbb{N}$, then $|x| \neq 3$. We may restate this result as $|x|=3$ if and only if there exists a cube yyy with $|y|=1$. Since there is no cube $y y y$ with $|y|=1$, then $|x| \neq 3$.

Any $9 p$ consecutive terms of v, where p is a positive integer, must have a subsequence either of the form $c(k) 01 c(k+1) \ldots 01 c(k+3 p-1)$ or of the form $c(k) 10 c(k+1) \ldots 10 c(k+$ $3 p-1)$. Thus, $|x|=3 p$ if and only if there exists a cube $y y y$ with $|y|=p$.

The word x starts at $c(k), c(k+|x|)$, and $c(k+2|x|)$ for some $k \in \mathbb{N}$. If $|x|$ is not a multiple of 3 , then $k, k+|x|$, and $k+2|x|$ take all the possible values modulo 3 and $c(k)$, $c(k+|x|)$, and $c(k+2|x|)$ cannot all be the same. Thus, $|x|$ is a multiple of 3 .

If $|x|$ is a positive multiple of 3 , then it can be expressed as $3^{a} \cdot b$, where a is a positive integer and b is a positive integer that is not a multiple of 3 . Since $|x|=3 p$ if and only if there exists a cube yyy with $|y|=p$, we may use this repeatedly to get the result that there exists a cube yyy with $|y|=b$. This contradicts our earlier result that if there exists a cube $y y y$, then $|y|$ is a multiple of 3 . Therefore, $|x|$ is not a positive multiple of 3 .

Thus, $|x|=0$ and v is cube-free.
Theorem 5. Let $v=\left\{c_{v}(k)\right\}_{0}^{\infty}$ and $w=\left\{c_{w}(k)\right\}_{0}^{\infty}$ be generalized choral sequences such that $r_{c}+1 \equiv r_{0}(\bmod 3)$ and $r_{c}+2 \equiv r_{1}(\bmod 3)$ for both. Any finite subsequence of v is also a subsequence of w.

Proof. By Theorem 4, 000 and 111 are not subsequences of v or w. By Lemma 1, all the other three-term binary sequences are subsequences of v and w. Thus, any three-term subsequence of v is also a subsequence of w. That is, for a given k_{v}, there exists a k_{w} such that $c_{v}\left(k_{v}\right) c_{v}\left(k_{v}+1\right) c_{v}\left(k_{v}+2\right)=c_{w}\left(k_{w}\right) c_{w}\left(k_{w}+1\right) c_{w}\left(k_{w}+2\right)$.

For a given k_{v}, the sequence $c_{v}\left(k_{v}\right) 01 c_{v}\left(k_{v}+1\right) 01 c_{v}\left(k_{v}+2\right)$ is a subsequence of v. Similarly, for some k_{w}, the sequence $c_{w}\left(k_{w}\right) 01 c_{w}\left(k_{w}+1\right) 01 c_{w}\left(k_{w}+2\right)$ is a subsequence of w. By the previous discussion, there exists a k_{w} such that $c_{w}\left(k_{w}\right) 01 c_{w}\left(k_{w}+1\right) 01 c_{w}\left(k_{w}+2\right)$ is a subsequence of w which is the same as $c_{v}\left(k_{v}\right) 01 c_{v}\left(k_{v}+1\right) 01 c_{v}\left(k_{v}+2\right)$.

Consequently, for a given k_{v} there exists a k_{w} such that $c_{w}\left(k_{w}\right) 01 c_{w}\left(k_{w}+1\right) \cdots 01$ $c_{w}\left(k_{w}+6\right)$ is a subsequence of w which is the same as $c_{v}\left(k_{v}\right) 01 c_{v}\left(k_{v}+1\right) \cdots 01 c_{v}\left(k_{v}+6\right)$, a subsequence of v.

We can extend this reasoning to arbitrarily long finite sequences of similar form. Any finite subsequence of v is a subsequence of a sequence of this form. Thus, any finite subsequence of v is also a subsequence of w.

Theorem 6. Let v and w be generalized choral sequences such that $r_{c}+1 \equiv r_{1}(\bmod 3)$ and $r_{c}+2 \equiv r_{0}(\bmod 3)$ for both. Any finite subsequence of v is also a subsequence of w.

The proof of Theorem 6 is similar to that of Theorem 5 , but now sequences of the form $c(k) 10 c(k+1) 10 c(k+2)$ are considered.

Definition 2. We define the complement of a binary sequence x to be the sequence \bar{x} obtained by replacing each 0 in x with a 1 , and each 1 in x with a 0 .

Corollary 1. Let v and w be generalized choral sequences. Any finite subsequence of v is either a subsequence of w or the complement of a subsequence of w.

Proof. If v and w satisfy the conditions of Theorem 5 or of Theorem 6, then any finite subsequence of v is a subsequence of w.

Otherwise, one of them, say v, has $r_{c}+1 \equiv r_{0}(\bmod 3)$ and $r_{c}+2 \equiv r_{1}(\bmod 3)$ and the other one, say w, has $r_{c}+1 \equiv r_{1}(\bmod 3)$ and $r_{c}+2 \equiv r_{0}(\bmod 3)$. By Lemma 1 , any three-term subsequence of v is the complement of a subsequence of w. That is, for a given k_{v}, there exists a k_{w} such that $c_{v}\left(k_{v}\right) c_{v}\left(k_{v}+1\right) c_{v}\left(k_{v}+2\right)=\bar{c}_{w}\left(k_{w}\right) \bar{c}_{w}\left(k_{w}+1\right) \bar{c}_{w}\left(k_{w}+2\right)$.

Furthermore, there exists a subsequence of $w c_{w}\left(k_{w}\right) 10 c_{w}\left(k_{w}+1\right) 10 c_{w}\left(k_{w}+2\right)$ whose complement $\bar{c}_{w}\left(k_{w}\right) \overline{1} \overline{0} \bar{c}_{w}\left(k_{w}+1\right) \overline{1} \overline{0} \bar{c}_{w}\left(k_{w}+2\right)$ is the same as $c_{v}\left(k_{v}\right) 01 c_{v}\left(k_{v}+1\right) 01 c_{v}\left(k_{v}+\right.$ $2)$, a subsequence of v.

Extending this reasoning to arbitrarily long finite sequences of similar form yields the result that any finite subsequence of v is the complement of a subsequence of w.

Acknowledgment. I thank an anonymous colleague for suggesting the generalizations in Theorems 2 and 3.

References

[1] J. Berstel and J. Karhumäki, Combinatorics on words-A tutorial, Bulletin of the European Association of Theoretical Computer Science (79) (2003), 178-228.
[2] J. Noche, On Stewart's choral sequence, Gibón, 8(1) (2008), 1-5.
[3] N. Sloane, The on-line encyclopedia of integer sequences, (2007), www.research. att.com/~njas/sequences/.
[4] I. Stewart, Mathematical recreations: The never-ending chess game, Scientific American, 273(4) (1995), 158, 160.

