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Abstract

We consider infinite binary sequences {c(k)}∞0 defined by c(3n+r0) = 0, c(3n+r1) =
1, and c(3n + rc) = c(n) (where the r’s are distinct elements of {0, 1, 2}) for all non-
negative integers n, and present a characteristic function for them. These sequences
are cube-free and any finite subsequence of one is either a subsequence of another or
the complement of a subsequence of another.
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1 Introduction

In 1995, Ian Stewart [4] presented the sequence

{s(k)}∞0 = 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 . . . ,

which he calls the choral sequence, as an example of a cube-free (binary) sequence, one that
does not contain any subsequences of the form xxx, where x is a sequence of 0’s and 1’s.
This is sequence A116178 in Sloane’s Online Encyclopedia of Integer Sequences [3].

We define Stewart’s choral sequence {s(k)}∞0 by s(3n) = 0, s(3n+2) = 1, and s(3n+1) =
s(n) for n ∈ N = {0, 1, 2, . . .}. (The presentation here differs slightly from Stewart’s. The
sequence he presented starts at s(1) and not s(0), and he used s(3n − 1) = 1 instead of
s(3n + 2) = 1.)

Definition 1. A generalized choral sequence is an infinite binary sequence {c(k)}∞0 defined
by c(3n + r0) = 0, c(3n + r1) = 1, and c(3n + rc) = c(n) where the r’s are distinct elements
of {0, 1, 2} and n ∈ N.

Note that if rc = 0, then the sequence is not uniquely defined, that is, c(0) can be either
0 or 1.

The sequences of numbers we consider may also be thought of as words of letters.

Theorem 1. A generalized choral sequence {c(k)}∞0 has a characteristic function

c(k) =
{

1, if ∃m, n ∈ N such that k = 3m (3n + r1) + rc

2 (3m − 1) ;
0, if ∃m, n ∈ N such that k = 3m (3n + r0) + rc

2 (3m − 1) .
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Proof. Setting m = 0 in c
(
3m (3n + r0) + rc

2 (3m − 1)
)

= 0 yields c(3n + r0) = 0 for all
n ∈ N. Setting m = 0 in c

(
3m (3n + r1) + rc

2 (3m − 1)
)

= 1 yields c(3n + r1) = 1 for all
n ∈ N.

If c(k) = 1, then k = 3m (3n + r1) + rc

2 (3m − 1) for some m, n ∈ N and 3k + rc =
3m+1 (3n + r1) + rc

2

(
3m+1 − 1

)
. Thus, if c(k) = 1, then c(3k + rc) = 1. Similarly, it can be

shown that if c(k) = 0, then c(3k + rc) = 0. Thus, c(3n + rc) = c(n) for all n ∈ N.

Remark 1. c(k) is well defined for any k ∈ N. Assume otherwise, that is, assume there exist
ma, mb, na, nb ∈ N such that 3ma (3na + r1)+ rc

2 (3ma − 1) = 3mb (3nb + r0)+ rc

2 (3mb − 1).
If ma = mb then 3na+r1 = 3nb+r0. But 3na+r1 ≡ r1 (mod 3) and 3nb+r0 ≡ r0 (mod 3)

for any na, nb ∈ N. Since r1 6≡ r0 (mod 3) then 3na +r1 6= 3nb +r0 for any na, nb ∈ N. Thus,
ma 6= mb.

If mb > ma, then
(
3na + r1 + rc

2

)
= 3mb−ma

(
3nb + r0 + rc

2

)
and (6na + 2r1 + rc) =

3mb−ma(6nb + 2r0 + rc). The right-hand side of the latter equation is a multiple of 3 but
the left-hand side is not a multiple of 3 since r1 and rc are distinct elements of {0, 1, 2}. (If
ma > mb, a similar argument yields the same result.) This contradiction means our initial
assumption is wrong.

Example 1. The fixed point of the morphism specified by 0 7→ 010 and 1 7→ 011 iterated
on 0 is found in a tutorial by Berstel and Karhumäki [1] and is sequence A080846 in Sloane’s
OEIS [3]. It is a generalized choral sequence {z(k)}∞0 with r0 = 0, r1 = 1, and rc = 2. Its
characteristic function is

z(k) =
{

1, if ∃m, n ∈ N such that k = 3m (3n + 1) + (3m − 1) ;
0, if ∃m, n ∈ N such that k = 3m (3n) + (3m − 1) .

Example 2. Stewart’s choral sequence is the fixed point of the morphism specified by
0 7→ 001 and 1 7→ 011 iterated on 0. (See, for example, [2].) It is a generalized choral
sequence {s(k)}∞0 with r0 = 0, r1 = 2, and rc = 1. Its characteristic function is

s(k) =
{

1, if ∃m, n ∈ N such that k = 3m (3n + 2) + 1
2 (3m − 1) ;

0, if ∃m, n ∈ N such that k = 3m (3n) + 1
2 (3m − 1) .

We mention in passing the following theorems which generalize Theorem 1.

Theorem 2. Let the infinite sequence {a(k)}∞0 be defined by a(`n + r0) = 0, a(`n + ra) =
a(n), and a(`n + r1,1) = a(`n + r1,2) = · · · = a(`n + r1,`−2) = 1 for all n ∈ N (where the r’s
are distinct elements of {0, 1, . . . , `− 1}). The sequence has a characteristic function

a(k) =
{

0, if ∃m, n ∈ N such that k = `m (`n + r0) + ra

`−1 (`m − 1) ;
1, otherwise.

Theorem 3. Let the infinite sequence {b(k)}∞0 be defined by b(`n+r1) = 1, b(`n+rb) = b(n),
and b(`n + r0,1) = b(`n + r0,2) = · · · = b(`n + r0,`−2) = 0 for all n ∈ N (where the r’s are
distinct elements of {0, 1, . . . , `− 1}). The sequence has a characteristic function

b(k) =
{

1, if ∃m, n ∈ N such that k = `m (`n + r1) + rb

`−1 (`m − 1) ;
0, otherwise.

The proofs are similar to that of Theorem 1.
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2 Some Properties

Lemma 1. A generalized choral sequence {c(k)}∞0 has all the subsequences 001, 010, 011,
100, 101, and 110.

Proof. There are two cases: either rc + 1 ≡ r0 (mod 3) and rc + 2 ≡ r1 (mod 3), or
rc + 1 ≡ r1 (mod 3) and rc + 2 ≡ r0 (mod 3).

In the first case, there exists a subsequence c(3n+rc +1)c(3n+rc +2)c(3n+rc +3)c(3n+
rc + 4)c(3n + rc + 5) = 0 1 c(n + 1) 0 1 for some n ∈ N. That is, there exist subsequences
01001 and 01101. These two subsequences contain all the subsequences 001, 010, 011, 100,
101, and 110.

In the second case, there exists a subsequence c(3n + rc + 1)c(3n + rc + 2)c(3n + rc +
3)c(3n + rc + 4)c(3n + rc + 5) = 1 0 c(n + 1) 1 0 for some n ∈ N. That is, there exist
subsequences 10010 and 10110. These two subsequences contain all the subsequences 001,
010, 011, 100, 101, and 110.

Theorem 4. A generalized choral sequence v = {c(k)}∞0 is cube-free.

Proof. The proof here is practically the same as Stewart’s [4] with some ideas taken from
Berstel and Karhumäki [1].

Assume there is a cube xxx in v. Denote the length of the sequence x by |x|.
Any three consecutive terms of v must have the terms c(k0) = 0 and c(k1) = 1 where

k0 ≡ r0 (mod 3) and k1 ≡ r1 (mod 3). Thus, 000 and 111 are not subsequences of v and
|x| 6= 1.

From the discussion in the proof of Lemma 1, any nine consecutive terms of v must have
a subsequence either of the form c(k) 0 1 c(k + 1) 0 1 c(k + 2) or of the form c(k) 1 0 c(k +
1) 1 0 c(k + 2). Since c(k), c(k + 1), and c(k + 2) are not all the same for any k ∈ N, then
|x| 6= 3. We may restate this result as |x| = 3 if and only if there exists a cube yyy with
|y| = 1. Since there is no cube yyy with |y| = 1, then |x| 6= 3.

Any 9p consecutive terms of v, where p is a positive integer, must have a subsequence
either of the form c(k) 0 1 c(k+1) . . . 0 1 c(k+3p−1) or of the form c(k) 1 0 c(k+1) . . . 1 0 c(k+
3p− 1). Thus, |x| = 3p if and only if there exists a cube yyy with |y| = p.

The word x starts at c(k), c(k + |x|), and c(k + 2|x|) for some k ∈ N. If |x| is not a
multiple of 3, then k, k + |x|, and k + 2|x| take all the possible values modulo 3 and c(k),
c(k + |x|), and c(k + 2|x|) cannot all be the same. Thus, |x| is a multiple of 3.

If |x| is a positive multiple of 3, then it can be expressed as 3a · b, where a is a positive
integer and b is a positive integer that is not a multiple of 3. Since |x| = 3p if and only if
there exists a cube yyy with |y| = p, we may use this repeatedly to get the result that there
exists a cube yyy with |y| = b. This contradicts our earlier result that if there exists a cube
yyy, then |y| is a multiple of 3. Therefore, |x| is not a positive multiple of 3.

Thus, |x| = 0 and v is cube-free.

Theorem 5. Let v = {cv(k)}∞0 and w = {cw(k)}∞0 be generalized choral sequences such
that rc + 1 ≡ r0 (mod 3) and rc + 2 ≡ r1 (mod 3) for both. Any finite subsequence of v is
also a subsequence of w.

Proof. By Theorem 4, 000 and 111 are not subsequences of v or w. By Lemma 1, all
the other three-term binary sequences are subsequences of v and w. Thus, any three-term
subsequence of v is also a subsequence of w. That is, for a given kv, there exists a kw such
that cv(kv)cv(kv + 1)cv(kv + 2) = cw(kw)cw(kw + 1)cw(kw + 2).
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For a given kv, the sequence cv(kv) 0 1 cv(kv + 1) 0 1 cv(kv + 2) is a subsequence of v.
Similarly, for some kw, the sequence cw(kw) 0 1 cw(kw + 1) 0 1 cw(kw + 2) is a subsequence of
w. By the previous discussion, there exists a kw such that cw(kw) 0 1 cw(kw+1) 0 1 cw(kw+2)
is a subsequence of w which is the same as cv(kv) 0 1 cv(kv + 1) 0 1 cv(kv + 2).

Consequently, for a given kv there exists a kw such that cw(kw) 0 1 cw(kw + 1) · · · 0 1
cw(kw + 6) is a subsequence of w which is the same as cv(kv) 0 1 cv(kv + 1) · · · 0 1 cv(kv + 6),
a subsequence of v.

We can extend this reasoning to arbitrarily long finite sequences of similar form. Any
finite subsequence of v is a subsequence of a sequence of this form. Thus, any finite subse-
quence of v is also a subsequence of w.

Theorem 6. Let v and w be generalized choral sequences such that rc + 1 ≡ r1 (mod 3)
and rc + 2 ≡ r0 (mod 3) for both. Any finite subsequence of v is also a subsequence of w.

The proof of Theorem 6 is similar to that of Theorem 5, but now sequences of the form
c(k) 1 0 c(k + 1) 1 0 c(k + 2) are considered.

Definition 2. We define the complement of a binary sequence x to be the sequence x
obtained by replacing each 0 in x with a 1, and each 1 in x with a 0.

Corollary 1. Let v and w be generalized choral sequences. Any finite subsequence of v is
either a subsequence of w or the complement of a subsequence of w.

Proof. If v and w satisfy the conditions of Theorem 5 or of Theorem 6, then any finite
subsequence of v is a subsequence of w.

Otherwise, one of them, say v, has rc + 1 ≡ r0 (mod 3) and rc + 2 ≡ r1 (mod 3) and
the other one, say w, has rc + 1 ≡ r1 (mod 3) and rc + 2 ≡ r0 (mod 3). By Lemma 1, any
three-term subsequence of v is the complement of a subsequence of w. That is, for a given
kv, there exists a kw such that cv(kv)cv(kv + 1)cv(kv + 2) = cw(kw)cw(kw + 1)cw(kw + 2).

Furthermore, there exists a subsequence of w cw(kw) 1 0 cw(kw + 1) 1 0 cw(kw + 2) whose
complement cw(kw) 1 0 cw(kw +1) 1 0 cw(kw +2) is the same as cv(kv) 0 1 cv(kv +1) 0 1 cv(kv +
2), a subsequence of v.

Extending this reasoning to arbitrarily long finite sequences of similar form yields the
result that any finite subsequence of v is the complement of a subsequence of w.

Acknowledgment. I thank an anonymous colleague for suggesting the generalizations in
Theorems 2 and 3.
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